The Sloan Digital Sky Survey Data Archive Server

Eric H. Neilsen, Jr.

and stores each frame in a raw fits file.

he spectro pipeline:
* combines exposures from one night,
* extracts spectra from each fiber,
* makes science measurements on each

* stores output in files according to
observation date, plate, and fiber.

The imaging pipeline:
* corrects frames for distortions,
* measures frame parameters (eg PSF),
* identifies objects
* measures their science properties,
* calibrates photometry using PT data,
* stores results in files based on
run, camera column, and frame.

The SQL loader loads pipeline outputs into an
SQL database. Loaded data includes
science and most observational parameters, but

not all intermediary results; data not loaded
includes

* corrected frames

* point spread functions
* QA plots

The Catalog Archive Server provides high level l
access to the data.

The CAS does not require downloading any data
to perform queries; users submit queries using a
web interface, and the database server performs
the query. (Of course, most users will want to
download the results of queries.) Processing time
and storage resources impose some limits on
what queries users can perform.

Even when it is too high level to contain all the

desired data, querying the CAS is often the best

way to determine which files in the DAS contain
the data of interest.

Spectrographs collect exposures on plates j >SS 2.5m

Imaging camera collects data in runs along stripes.
Each CCD has a filter and a camera column.
The data acquisition system:

splits data from a CCD into frames,

The SDSS Data Pipeline

2.5m Imaging
Camera

Photometric
Telescope

Spectrographs

MT
Pipelines

Spectro

Imaging
Pipelines

Pipelines

Chris Stoughton

The Data Archive Server

e
—_
—_—
—_—
—_—
—_—
—_—
—
—_
e

-
p——
p——
—_—
p—

- —
o ——
— ——
e

RAID arrays that actually hold the

data, and serve the data directories to
the DAS server over NFS.

/

| The DAS server is itself a linux box,

y running uncustomized versions of NFS,
apache, and rsync.

<<directory structure>>
Data Root

T
|
|

=]

SDSS Directory

Data Release 5 and supplemental runs
Structure

contain over 12Tb of data in 17 million files

including (but are not limited to):
* Corrected image frames

* Color jpeg images (unbinned and binned)
N i Catalogs of objects found in each image
* Extracted and calibrated spectra
 Z * Parameters measured from the spectra
* Astrometric calibration data
SQL Loader * Photometric calibration data
* Plots of the spectra
* QA Plots

The directory structure organizes data by
observing parameters, and does not make
searching based on science criteria easy.
File formats and contents are not always
convenient to users. While most files follow
fits standards, there are exceptions, and in
many cases proper interpretation of the file
contents requires detailed knowledge of the
processing pipelines. Supporting their use
by the public requires extensive

documentation and effort by the SDSS help
desk.

\ 4
On-Line Database

—
— — —
—
— — —
— —
—_— =
— — —
— —
—
— =
— — —
— — — —
— —
— —
—
— — —
— —
—_— ==
— — —
— —
—
— =
— =

|
|
| |
. : : , 2]
<<directory structure>>""| | i | <<directory structure>>
DR4 links i i DR4 links
; P e !
4 \\: 1~ |
- |\><f1 l
=] =]
<<server>> <<server>>| _cqi script>;ﬂ /
rsync apache

DAS

<<Cgi script>>
ZIC

<<cgi script>>
FOOT

/|

/JA CGl script served by the apache server lets
/ Qusers generate lists of URLs or fully qualified file
names based on the desired types of files and
desired observations. Imaging observations must
be designated using run number, camera column,
and frame number, and specroscopic observations

must be designated using plate number, fiber
number, and observation date. Users can identify
observations of interest using the CAS, or based
on position using an additional CGl script.

=
—~

Each data release has a corresponding
directory tree containing symbolic links
to the data that is part of the release.
The directories cannot themselves be
links, because the served directories

often contain data that is not part of the
data release.

CAS

DAS files

science query

Verification and Validation of a Data Release

To ensure that we are serving the correct data, we have constructed tools that:
- verify that all files that should be served by the DAS are present,
- verify that no files that should not be served are, and
- check each file being served for corruption.

Administration tools read the definition of the data release from a collection of parameter
files, and generate a list of directories and their contents based on that definition. In each
directory, the tools generate and maintain a “file list file:” a list of files that should be present
in that directory and their expected checksums, and store a list of the file list files that define
the contents of all directories in the data release. Automated tasks then check the contents

and checksums of files served by the DAS against the file lists.

This approach has several drawbacks, some of which may be addressed in future releases.
First, corrupt files do not always get replaced by files identical to the originals. Some files are
regenerated rather than restored from back up, in which case the data content will be the
same but dates in headers may differ. The file list cannot be used to verify that the data

content has not changed, and must be updated whenever this occurs.

The calculation of the checksum in a separate step from file generation introduces a second

flaw: it is possible for the file to become corrupt before the checksum is calculated.

Finally, the storage of validation information in a custom format reduces their usefulness to

USErs.

Several alternate approaches address some or all of these problems. Our fits writer could be
modified to include checksum information in headers. Alternately, it could be modified to
compress output files using GNU gzip, which includes a checksum. Unfortunately, neither of
these approaches are practical for existing data. The custom checksum file format could be

replaced by md5sum output, which would result in a standard format with minimal
modification of our tools, but would only address the last of the known problems.

®—bservaton parameters
observation query
< list of URLs
file requests
B Data files

File Systems and Large Directory Structures

To publish a new data release on the DAS, we must generate a directory
structure containing symbolic links to each of the files that constitute the
data release. (Links to directories are not acceptable, because the
directories hosting the data may contain data that is not part of the data
release.)

This apparently simple task is surprisingly time consuming; generating the
populated directory structure for the fifth data release, containing 14 million
files, took more than 24 hours. The file systems we tried (ext3 and xfs) are
better optimized for file creation than deletion, so removing an existing data
structure was even more time consuming. Restoration of these directory
structures from backup or regeneration to correct errors was therefore a
problem.

We find keeping each data release on its own partition, and using a raw disk
dump of the partition as a backup, to be a more practical solution.

Future Directions

While most users of the DAS retrieve only a handful of files, a handful of users retrieve large fractions of the available data. These users are typically generating local full or

partial mirrors. The receiving sites are often overseas, which can slow the already long transfers. We are exploring the use of “P2P” software, particularly bitTorrent, to take
advantage of existing mirrors to improve the download time by allowing clients to retrieve different parts of the data release from different mirrors.

While bitTorrent appears promising, several challenges must be met. The data release must be divided into “torrents,” which in turn must be divided into “pieces.” In the

clients we have studied so far, memory availability limits the number of pieces a client can manage, the size of each piece, and the number of torrents managed. For
bitTorrent to be used, we will need either to be very careful in the construction of our torrents, or construct a client that manages memory differently.

